
The architecture of arti�cial neural networks is modeled after the human brain. However, simple 
biological organisms above a certain complexity are also capable of data classi�cation and analysis. 
This capability is embedded in them through evolution, rather than training. In this study, we 
demonstrate how basic functional assumptions, derived from physical and environmental 
constraints, can lead to the construction of a self-consistent model that explains these capabilities. 
Furthermore, this model can serve as a foundation for advanced models, as its principles are easily 
scalable. Naturally, these capabilities develop over time, and we trace their origin until the point 
where such a network can solve NP-hard problems in polynomial time. The e�cient problem-solving 
demonstrated in this study calls for further quantitative examination of more complex models built 
on the same principles.
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In the �eld of arti�cial intelligence, arti�cial neural networks 
(ANNs) have traditionally been derived from brain dynamics, 
modeling neurons, synapses and their biological traits [1]. 
Biologically inspired computing is an integral part of natural 
computation, utilizing biology or biological processes as models 
to develop new computing technologies [2]. ANNs have been 
developed as generalizations of mathematical models of 
biological nervous systems and have achieved considerable 
success in applied science [3].

 However, recent discoveries have revealed natural 
computational capabilities in seemingly primitive life forms, 
such as the unicellular plasmodium of Physarum polycephalum. 
�is organism has garnered signi�cant attention due to its 
intriguing decentralized computing capabilities [4]. �rough 
morphing its amorphous body, the plasmodium actively 
searches for optimal routes among food sources, forms regular 
graphs, and anticipates periodic events. Remarkably, under 
certain conditions, it solves the traveling salesman problem 
(TSP), an NP-hard problem, by altering its shape to minimize 
exposure to aversive light stimuli. Surprisingly, it is capable of 
�nding reasonably high-quality TSP solutions within a time 
period that grows linearly with increasing problem size. 
Another important aspect of natural computational capabilities 
is associative learning, which refers to the process through 
which organisms learn the relationship between two distinct 
events. While this phenomenon has been extensively studied in 
animals, recent discoveries of associative learning in cnidarians 
[5], such as sea anemones and jelly�sh, which possess 
decentralized neural networks, suggest that the ability to classify 
data and analyze temporal event dependencies may be an 
inherent feature of all biological beings. Further research is 
required to develop and investigate models that explain these 
behaviors in their simplest forms, thus enabling a better 
understanding of the origin and evolution of cognition in 

general. Additionally, it would be valuable to retrospectively 
apply these newly discovered principles to existing ANN 
models to assess their compatibility in terms of topology and 
work�ow.

 �e key question driving our research is whether there is a 
common denominator among all biological systems capable of 
performing natural computations. �is common 
denominator should ful�ll two criteria: (a) it must be 
minimal, unable to be further reduced, and (b) it must be 
viable, enabling successful survival under speci�c 
environmental conditions. We hypothesize that there exist 
organisms, possibly less advanced than unicellular 
plasmodium or cnidarians, yet capable of performing natural 
computations in the manner we have described. Furthermore, 
we believe that their inherent behavioral properties can be 
explained by our model.

Methods
If we attempt to apply existing arti�cial neural networks to 
such simple life forms, we encounter various challenges. 
While biologically plausible spiking neural networks (SNNs) 
demonstrate strong performance with supervised learning 
methods [6,7], training SNNs using unsupervised learning 
proves di�cult due to the lack of clear objectives or metrics for 
optimization. Furthermore, we can question the applicability 
of SNNs to the simplest biological systems, as there is no 
evidence indicating that the functionality of neurons in such 
systems is not signi�cantly reduced or altered. Rather than 
focusing on constructing a speci�c neural network for this 
scenario, our goal is to understand how they should behave in 
order to gain an evolutionary advantage.

 In this section, we introduce several families of 
continuous-time rigid-body kinematic models in a virtual 
environment, ordered by complexity (Table 1):

 �e virtual environment is de�ned as a 2D plane populated 
with actors, which are kinematic models, as well as 
surroundings that can be consumed by the actors. �e 
surroundings possess a single characteristic, which is density, 0 
< 𝑝 < 1. �is density inversely impacts the terminal velocity of 
the actors as...       .... , assuming a constant virtual drag 
coe�cient and area [8]. Correspondingly �i=C*p*v . In this 
context, the model e�ciency (later referred to as "e�ectiveness") 
can be naturally de�ned within a given time interval as                                   
.                 ..., provided that the incoming signal frequency 
remains constant. �is e�ectiveness value can be integrated 
over any period 

 We have excluded both Model №1 and №2 from further 
considerations due to their trivial nature. However, it is worth 
noting that Model №2 exhibits a signi�cant evolutionary 
advantage compared to Model №1. For a more realistic 
representation of these two models, an additional trait of the 
surroundings is required, namely a small random deviating �ow 
vector that is added to the actor's movement vector.

 Furthermore, Model №4 stands out from the group as it 
introduces the concept of associative learning. Although both 
functional inputs in this model are of the same type, they are 
bound to temporally symmetrical signals. Considering that 
associative learning has been observed in the simplest 
organisms we will further investigate this model as is [5]. We 
will demonstrate that the behavioral pattern of this model is 
very similar to that of Model №3 but its e�ectiveness is 
signi�cantly higher. Exploring this model with di�erent 
functional inputs, combining neutral and aversive stimuli to 
emulate a classical conditioning scenario, would be an engaging 
but optional task.

 Lastly, we examine how all these models respond to changes 
in the main characteristic, "resonant frequency" 𝐶1 and attempt 
to identify any correlation, if present, between this frequency 
and the density 𝑝 with the optimization task of maximizing the 
model's e�ectiveness.

All test environments are categorized into these groups (Table 
2):

 For each combination of model and environment, we 
calculate                           based on a series of 1000 runs, with a 
95% con�dence level. Each run is time-limited. To assess the 
model's scalability quantitatively, we extend the initial size of 
the virtual environment linearly using multipliers of x2, x4, x8. 
�e complete virtual environment is implemented as an 
event-driven state machine, incorporating data collection, 
statistical analysis, and graphical representation powered by 
OpenGL. For more detailed information, please refer to the 
Data Availability section.

Results
In this section, we present the preliminary analysis of the 
kinematic models within the de�ned virtual environments. �e 
results focus on identifying correlations between various 
factors, such as the number of runs, model con�gurations, and 
environmental characteristics. �e analysis is intended to 
provide insights into the models' performance, scalability, and 
e�ectiveness in di�erent scenarios. �e following table outlines 
the types of correlations we aim to explore (Table 3).

 �e following �gures provide visual representations of 
the patterns and behaviors observed in the kinematic 
models as they interact with various virtual environments. 
Each �gure highlights a speci�c pattern or combination of 
patterns, showcasing how the models adapt their search and 
tracking strategies in response to di�erent environmental 
conditions. �ese illustrative graphs are essential for 
understanding the underlying mechanisms of the models 
and their potential applications in simulating natural 
computational behaviors:     
Discussion
We observed two distinct tactics of exploratory behavior: 
“tracking” (Figure 1), exhibited by all models, and “outward 
spiral” (Figure 2), discovered in the composite model, 3x1x2. 

�e combination of these tactics, when translated into the 
foraging strategy of primitive organisms, should encompass the 
following scenarios of resource availability:

• Normal resource availability level;
• Below-average level of resources;
• Above average, abundance of resources;

Figure 1. Tracking pattern around di�erent surroundings, pure 
tracking pattern.

Figure 2. Outward spiral/search pattern for the composite 
model, 3x1x2.

 Under normal circumstances, when the average amount of 
resources is gathered in symmetrical or linear structures, we 
observe a simple "tracking" pattern. However, when resource 
availability drops below a certain level, the system transitions 
into an "outward spiral" or "search" pattern, which is considered 
an e�cient search technique [9,10]. Additionally, there is a 
correlation between the amplitude excursion of the "tracking" 
pattern and resource density, o�en directly proportional 
(Figure 3). �is enhances the system's e�ciency in 
environments with 2nd-degree structures, such as symmetrical 
or continuous groups of lines, curves, and scribbles of various 
densities and sizes.

 �us, by applying phylogenetic principles to minimalistic 
kinematic models, we can explore a possible progression in 
systems that lack the ability to learn from experience. �ese 
systems can be described as "evolutionary trained" and may 
serve as precursors to more evolved organisms, such as C. 
Elegans, whose foraging strategy exhibits similarities to what we 
observe in our model [11]. While recent advances in integrative 
biological simulation of C. Elegans allow for modeling the 
strategy to some extent, the model does not provide an 
explanation for the origin of the behavior or the opportunity to 
observe it in less complex organisms [12]. We hypothesize that 
this behavior is ingrained into the control circuits at the lowest 
level, as it o�ers evolutionary advantages by facilitating 
cost-e�ective foraging.

Figure 3. Tracking pattern around di�erent surroundings, 
tracking/search pattern combined.

 It is important to note that the "tracking" tactic works more 
e�ectively in a more structured environment, allowing for 
�nding an optimal solution in polynomial time as the linear size 
of the environment increases. At the same time, the e�ciency of 
the model increases with its internal complexity, reaching a 
plateau in the con�guration Nx1x2, when N>5. When 
comparing the performance of models with a single input (1x2) 
and models with spatially divided inputs (2x2), we observe a 
signi�cant improvement in the latter, (Figures 4 vs 5). �is 
improvement is attributed to the model's ability to distinguish 
between the le� and right sides when approaching linearly 
congregated resources, resulting in fewer mistakes in 
determining directions.

Figure 5. Tracking pattern turning into a shrinking spiral 
around large objects. �e yellow trace, which highlights the 
traversed path, has been disabled for clarity.

 Foraging, as a distinct subgroup of classic AI search 
problems, has been extensively studied [13,14]. However, we 
want to emphasize that even with the underlying logic reduced 
to a few basic rules, we can still achieve the same goals while 
maintaining the neuromorphic structure of the network. �is 
network can be seen as a trivial case of spiking neural networks, 
lacking learning ability yet capable of discovering patterns. In 
this context, the transition to a Lévy type search strategy can be 
viewed as a switch between the "tracking" and "search" patterns 
explained earlier and illustrated in Figure 3 [15,16].

 Naturally, the model has certain limitations due to 
self-imposed restrictions on dimensionality and concurrency, 
which could take into account the role of competition for scarce 
resources among peers. However, the main factor that is 
excluded from consideration is the ability to save state to learn 
from experience. �e model cannot be trained in the 
conventional sense by repeatedly running it in the same 
environment. Nevertheless, it demonstrates structural 
development over longer evolutionary timeframes, suggesting a 
progression on an evolutionary scale. It would be an intriguing 
task to further investigate the evolution of such systems by 
adding more inputs (potentially responsive to aversive stimuli) 
and outputs, and applying formal natural selection rules, to 
create a higher-level "evolutionary trained" model [17].

 However, before delving into further development, it is 
important to understand how this "purely behavioral" model 
could be translated into a neural network model, considering 
certain restrictions that need to be enforced. �e suggested 
variant of the translation, as depicted in Figure 6, incorporates 
two distinct properties:

• A wide range of working frequencies is covered by the same 
topology, as the summarizing neuron will only spike when its 
input signals of varying frequencies coincide;

• By applying the Hebbian Rule [18] to certain inputs, it 
becomes possible to generate the required outputs for either 
part of the behavioral model's piecewise function 𝑓𝑖 < 𝐶1or 
𝑓𝑖 ≥ 𝐶1. �e shared input signal would trigger repeated 
generation through the feedback circuit. In the �rst case, this 
circuit takes priority, and subsequent shared input signals 
would not a�ect the frequency of the output signal, which is 
the multiplication of all circuit frequencies. In the other case, 
the shared input signal is prioritized, and every signal would 
start the generation process anew, resulting in an inde�nite 
delay in the output for a certain period;

Figure 6. Proposed behavioral model translation into a neural 
network model.

�us, this network fragment can ful�ll the requirements of both 
the 1x2 and composite 3x2x1 models serving as a basis for 
constructing a topologically uniform spiking neural network 
that describes the behavior of organisms trained by evolution to 
possess natural computational capabilities. 

 We hypothesize that these simple functional principles could 
also be applicable to more advanced species, such as ants, 
worms, ichnospecies, honeybees, and others, and we encourage 
further research into this type of natural neural network 
[19,20,21]. 

Conclusions
In conclusion, integrating simple spiking networks, each tuned 
to di�erent frequencies, into a composite model capable of 
replicating the complex track-and-search behavior observed in 
nature could o�er valuable insights into the foundational 
principles of intelligence. We hypothesize that the performance 
of these small-scale networks (We refer to them as “tuning 
forks” or camertones), when they all “play in tune and in 
harmony”, may surpass that of traditional arti�cial neural 
networks (ANNs) due to their evolutionary re�nement and 
minimal training requirements. �e learning mechanisms of 
such networks are likely to di�er signi�cantly from those of 
traditional ANNs, warranting further investigation to fully 
understand their unique learning processes.

Data availability
All code and data are publicly accessible at: 
https://github.com/FoundAItion-ai/Its
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In the �eld of arti�cial intelligence, arti�cial neural networks 
(ANNs) have traditionally been derived from brain dynamics, 
modeling neurons, synapses and their biological traits [1]. 
Biologically inspired computing is an integral part of natural 
computation, utilizing biology or biological processes as models 
to develop new computing technologies [2]. ANNs have been 
developed as generalizations of mathematical models of 
biological nervous systems and have achieved considerable 
success in applied science [3].

 However, recent discoveries have revealed natural 
computational capabilities in seemingly primitive life forms, 
such as the unicellular plasmodium of Physarum polycephalum. 
�is organism has garnered signi�cant attention due to its 
intriguing decentralized computing capabilities [4]. �rough 
morphing its amorphous body, the plasmodium actively 
searches for optimal routes among food sources, forms regular 
graphs, and anticipates periodic events. Remarkably, under 
certain conditions, it solves the traveling salesman problem 
(TSP), an NP-hard problem, by altering its shape to minimize 
exposure to aversive light stimuli. Surprisingly, it is capable of 
�nding reasonably high-quality TSP solutions within a time 
period that grows linearly with increasing problem size. 
Another important aspect of natural computational capabilities 
is associative learning, which refers to the process through 
which organisms learn the relationship between two distinct 
events. While this phenomenon has been extensively studied in 
animals, recent discoveries of associative learning in cnidarians 
[5], such as sea anemones and jelly�sh, which possess 
decentralized neural networks, suggest that the ability to classify 
data and analyze temporal event dependencies may be an 
inherent feature of all biological beings. Further research is 
required to develop and investigate models that explain these 
behaviors in their simplest forms, thus enabling a better 
understanding of the origin and evolution of cognition in 

general. Additionally, it would be valuable to retrospectively 
apply these newly discovered principles to existing ANN 
models to assess their compatibility in terms of topology and 
work�ow.

 �e key question driving our research is whether there is a 
common denominator among all biological systems capable of 
performing natural computations. �is common 
denominator should ful�ll two criteria: (a) it must be 
minimal, unable to be further reduced, and (b) it must be 
viable, enabling successful survival under speci�c 
environmental conditions. We hypothesize that there exist 
organisms, possibly less advanced than unicellular 
plasmodium or cnidarians, yet capable of performing natural 
computations in the manner we have described. Furthermore, 
we believe that their inherent behavioral properties can be 
explained by our model.

Methods
If we attempt to apply existing arti�cial neural networks to 
such simple life forms, we encounter various challenges. 
While biologically plausible spiking neural networks (SNNs) 
demonstrate strong performance with supervised learning 
methods [6,7], training SNNs using unsupervised learning 
proves di�cult due to the lack of clear objectives or metrics for 
optimization. Furthermore, we can question the applicability 
of SNNs to the simplest biological systems, as there is no 
evidence indicating that the functionality of neurons in such 
systems is not signi�cantly reduced or altered. Rather than 
focusing on constructing a speci�c neural network for this 
scenario, our goal is to understand how they should behave in 
order to gain an evolutionary advantage.

 In this section, we introduce several families of 
continuous-time rigid-body kinematic models in a virtual 
environment, ordered by complexity (Table 1):

 �e virtual environment is de�ned as a 2D plane populated 
with actors, which are kinematic models, as well as 
surroundings that can be consumed by the actors. �e 
surroundings possess a single characteristic, which is density, 0 
< 𝑝 < 1. �is density inversely impacts the terminal velocity of 
the actors as...       .... , assuming a constant virtual drag 
coe�cient and area [8]. Correspondingly �i=C*p*v . In this 
context, the model e�ciency (later referred to as "e�ectiveness") 
can be naturally de�ned within a given time interval as                                   
.                 ..., provided that the incoming signal frequency 
remains constant. �is e�ectiveness value can be integrated 
over any period 

 We have excluded both Model №1 and №2 from further 
considerations due to their trivial nature. However, it is worth 
noting that Model №2 exhibits a signi�cant evolutionary 
advantage compared to Model №1. For a more realistic 
representation of these two models, an additional trait of the 
surroundings is required, namely a small random deviating �ow 
vector that is added to the actor's movement vector.

 Furthermore, Model №4 stands out from the group as it 
introduces the concept of associative learning. Although both 
functional inputs in this model are of the same type, they are 
bound to temporally symmetrical signals. Considering that 
associative learning has been observed in the simplest 
organisms we will further investigate this model as is [5]. We 
will demonstrate that the behavioral pattern of this model is 
very similar to that of Model №3 but its e�ectiveness is 
signi�cantly higher. Exploring this model with di�erent 
functional inputs, combining neutral and aversive stimuli to 
emulate a classical conditioning scenario, would be an engaging 
but optional task.

 Lastly, we examine how all these models respond to changes 
in the main characteristic, "resonant frequency" 𝐶1 and attempt 
to identify any correlation, if present, between this frequency 
and the density 𝑝 with the optimization task of maximizing the 
model's e�ectiveness.

All test environments are categorized into these groups (Table 
2):

Name Topology Model

1 Stochastic motion, 1x1

– input and output signal frequencies

- constant

2 Inverse motion, 1x1

3 Inverse motion, 1x2

4 Inverse motion, 2x2

5 Composite motion, counter 

phase, 3x1x2

Table 1. Overview of continuous-time rigid-body kinematic models in a virtual environment.

 For each combination of model and environment, we 
calculate                           based on a series of 1000 runs, with a 
95% con�dence level. Each run is time-limited. To assess the 
model's scalability quantitatively, we extend the initial size of 
the virtual environment linearly using multipliers of x2, x4, x8. 
�e complete virtual environment is implemented as an 
event-driven state machine, incorporating data collection, 
statistical analysis, and graphical representation powered by 
OpenGL. For more detailed information, please refer to the 
Data Availability section.

Results
In this section, we present the preliminary analysis of the 
kinematic models within the de�ned virtual environments. �e 
results focus on identifying correlations between various 
factors, such as the number of runs, model con�gurations, and 
environmental characteristics. �e analysis is intended to 
provide insights into the models' performance, scalability, and 
e�ectiveness in di�erent scenarios. �e following table outlines 
the types of correlations we aim to explore (Table 3).

 �e following �gures provide visual representations of 
the patterns and behaviors observed in the kinematic 
models as they interact with various virtual environments. 
Each �gure highlights a speci�c pattern or combination of 
patterns, showcasing how the models adapt their search and 
tracking strategies in response to di�erent environmental 
conditions. �ese illustrative graphs are essential for 
understanding the underlying mechanisms of the models 
and their potential applications in simulating natural 
computational behaviors:     
Discussion
We observed two distinct tactics of exploratory behavior: 
“tracking” (Figure 1), exhibited by all models, and “outward 
spiral” (Figure 2), discovered in the composite model, 3x1x2. 

�e combination of these tactics, when translated into the 
foraging strategy of primitive organisms, should encompass the 
following scenarios of resource availability:

• Normal resource availability level;
• Below-average level of resources;
• Above average, abundance of resources;

Figure 1. Tracking pattern around di�erent surroundings, pure 
tracking pattern.

Figure 2. Outward spiral/search pattern for the composite 
model, 3x1x2.

 Under normal circumstances, when the average amount of 
resources is gathered in symmetrical or linear structures, we 
observe a simple "tracking" pattern. However, when resource 
availability drops below a certain level, the system transitions 
into an "outward spiral" or "search" pattern, which is considered 
an e�cient search technique [9,10]. Additionally, there is a 
correlation between the amplitude excursion of the "tracking" 
pattern and resource density, o�en directly proportional 
(Figure 3). �is enhances the system's e�ciency in 
environments with 2nd-degree structures, such as symmetrical 
or continuous groups of lines, curves, and scribbles of various 
densities and sizes.

 �us, by applying phylogenetic principles to minimalistic 
kinematic models, we can explore a possible progression in 
systems that lack the ability to learn from experience. �ese 
systems can be described as "evolutionary trained" and may 
serve as precursors to more evolved organisms, such as C. 
Elegans, whose foraging strategy exhibits similarities to what we 
observe in our model [11]. While recent advances in integrative 
biological simulation of C. Elegans allow for modeling the 
strategy to some extent, the model does not provide an 
explanation for the origin of the behavior or the opportunity to 
observe it in less complex organisms [12]. We hypothesize that 
this behavior is ingrained into the control circuits at the lowest 
level, as it o�ers evolutionary advantages by facilitating 
cost-e�ective foraging.

Figure 3. Tracking pattern around di�erent surroundings, 
tracking/search pattern combined.

 It is important to note that the "tracking" tactic works more 
e�ectively in a more structured environment, allowing for 
�nding an optimal solution in polynomial time as the linear size 
of the environment increases. At the same time, the e�ciency of 
the model increases with its internal complexity, reaching a 
plateau in the con�guration Nx1x2, when N>5. When 
comparing the performance of models with a single input (1x2) 
and models with spatially divided inputs (2x2), we observe a 
signi�cant improvement in the latter, (Figures 4 vs 5). �is 
improvement is attributed to the model's ability to distinguish 
between the le� and right sides when approaching linearly 
congregated resources, resulting in fewer mistakes in 
determining directions.

Figure 5. Tracking pattern turning into a shrinking spiral 
around large objects. �e yellow trace, which highlights the 
traversed path, has been disabled for clarity.

 Foraging, as a distinct subgroup of classic AI search 
problems, has been extensively studied [13,14]. However, we 
want to emphasize that even with the underlying logic reduced 
to a few basic rules, we can still achieve the same goals while 
maintaining the neuromorphic structure of the network. �is 
network can be seen as a trivial case of spiking neural networks, 
lacking learning ability yet capable of discovering patterns. In 
this context, the transition to a Lévy type search strategy can be 
viewed as a switch between the "tracking" and "search" patterns 
explained earlier and illustrated in Figure 3 [15,16].

 Naturally, the model has certain limitations due to 
self-imposed restrictions on dimensionality and concurrency, 
which could take into account the role of competition for scarce 
resources among peers. However, the main factor that is 
excluded from consideration is the ability to save state to learn 
from experience. �e model cannot be trained in the 
conventional sense by repeatedly running it in the same 
environment. Nevertheless, it demonstrates structural 
development over longer evolutionary timeframes, suggesting a 
progression on an evolutionary scale. It would be an intriguing 
task to further investigate the evolution of such systems by 
adding more inputs (potentially responsive to aversive stimuli) 
and outputs, and applying formal natural selection rules, to 
create a higher-level "evolutionary trained" model [17].

 However, before delving into further development, it is 
important to understand how this "purely behavioral" model 
could be translated into a neural network model, considering 
certain restrictions that need to be enforced. �e suggested 
variant of the translation, as depicted in Figure 6, incorporates 
two distinct properties:

• A wide range of working frequencies is covered by the same 
topology, as the summarizing neuron will only spike when its 
input signals of varying frequencies coincide;

• By applying the Hebbian Rule [18] to certain inputs, it 
becomes possible to generate the required outputs for either 
part of the behavioral model's piecewise function 𝑓𝑖 < 𝐶1or 
𝑓𝑖 ≥ 𝐶1. �e shared input signal would trigger repeated 
generation through the feedback circuit. In the �rst case, this 
circuit takes priority, and subsequent shared input signals 
would not a�ect the frequency of the output signal, which is 
the multiplication of all circuit frequencies. In the other case, 
the shared input signal is prioritized, and every signal would 
start the generation process anew, resulting in an inde�nite 
delay in the output for a certain period;

Figure 6. Proposed behavioral model translation into a neural 
network model.

�us, this network fragment can ful�ll the requirements of both 
the 1x2 and composite 3x2x1 models serving as a basis for 
constructing a topologically uniform spiking neural network 
that describes the behavior of organisms trained by evolution to 
possess natural computational capabilities. 

 We hypothesize that these simple functional principles could 
also be applicable to more advanced species, such as ants, 
worms, ichnospecies, honeybees, and others, and we encourage 
further research into this type of natural neural network 
[19,20,21]. 

Conclusions
In conclusion, integrating simple spiking networks, each tuned 
to di�erent frequencies, into a composite model capable of 
replicating the complex track-and-search behavior observed in 
nature could o�er valuable insights into the foundational 
principles of intelligence. We hypothesize that the performance 
of these small-scale networks (We refer to them as “tuning 
forks” or camertones), when they all “play in tune and in 
harmony”, may surpass that of traditional arti�cial neural 
networks (ANNs) due to their evolutionary re�nement and 
minimal training requirements. �e learning mechanisms of 
such networks are likely to di�er signi�cantly from those of 
traditional ANNs, warranting further investigation to fully 
understand their unique learning processes.

Data availability
All code and data are publicly accessible at: 
https://github.com/FoundAItion-ai/Its
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In the �eld of arti�cial intelligence, arti�cial neural networks 
(ANNs) have traditionally been derived from brain dynamics, 
modeling neurons, synapses and their biological traits [1]. 
Biologically inspired computing is an integral part of natural 
computation, utilizing biology or biological processes as models 
to develop new computing technologies [2]. ANNs have been 
developed as generalizations of mathematical models of 
biological nervous systems and have achieved considerable 
success in applied science [3].

 However, recent discoveries have revealed natural 
computational capabilities in seemingly primitive life forms, 
such as the unicellular plasmodium of Physarum polycephalum. 
�is organism has garnered signi�cant attention due to its 
intriguing decentralized computing capabilities [4]. �rough 
morphing its amorphous body, the plasmodium actively 
searches for optimal routes among food sources, forms regular 
graphs, and anticipates periodic events. Remarkably, under 
certain conditions, it solves the traveling salesman problem 
(TSP), an NP-hard problem, by altering its shape to minimize 
exposure to aversive light stimuli. Surprisingly, it is capable of 
�nding reasonably high-quality TSP solutions within a time 
period that grows linearly with increasing problem size. 
Another important aspect of natural computational capabilities 
is associative learning, which refers to the process through 
which organisms learn the relationship between two distinct 
events. While this phenomenon has been extensively studied in 
animals, recent discoveries of associative learning in cnidarians 
[5], such as sea anemones and jelly�sh, which possess 
decentralized neural networks, suggest that the ability to classify 
data and analyze temporal event dependencies may be an 
inherent feature of all biological beings. Further research is 
required to develop and investigate models that explain these 
behaviors in their simplest forms, thus enabling a better 
understanding of the origin and evolution of cognition in 

general. Additionally, it would be valuable to retrospectively 
apply these newly discovered principles to existing ANN 
models to assess their compatibility in terms of topology and 
work�ow.

 �e key question driving our research is whether there is a 
common denominator among all biological systems capable of 
performing natural computations. �is common 
denominator should ful�ll two criteria: (a) it must be 
minimal, unable to be further reduced, and (b) it must be 
viable, enabling successful survival under speci�c 
environmental conditions. We hypothesize that there exist 
organisms, possibly less advanced than unicellular 
plasmodium or cnidarians, yet capable of performing natural 
computations in the manner we have described. Furthermore, 
we believe that their inherent behavioral properties can be 
explained by our model.

Methods
If we attempt to apply existing arti�cial neural networks to 
such simple life forms, we encounter various challenges. 
While biologically plausible spiking neural networks (SNNs) 
demonstrate strong performance with supervised learning 
methods [6,7], training SNNs using unsupervised learning 
proves di�cult due to the lack of clear objectives or metrics for 
optimization. Furthermore, we can question the applicability 
of SNNs to the simplest biological systems, as there is no 
evidence indicating that the functionality of neurons in such 
systems is not signi�cantly reduced or altered. Rather than 
focusing on constructing a speci�c neural network for this 
scenario, our goal is to understand how they should behave in 
order to gain an evolutionary advantage.

 In this section, we introduce several families of 
continuous-time rigid-body kinematic models in a virtual 
environment, ordered by complexity (Table 1):

 �e virtual environment is de�ned as a 2D plane populated 
with actors, which are kinematic models, as well as 
surroundings that can be consumed by the actors. �e 
surroundings possess a single characteristic, which is density, 0 
< 𝑝 < 1. �is density inversely impacts the terminal velocity of 
the actors as...       .... , assuming a constant virtual drag 
coe�cient and area [8]. Correspondingly �i=C*p*v . In this 
context, the model e�ciency (later referred to as "e�ectiveness") 
can be naturally de�ned within a given time interval as                                   
.                 ..., provided that the incoming signal frequency 
remains constant. �is e�ectiveness value can be integrated 
over any period 

 We have excluded both Model №1 and №2 from further 
considerations due to their trivial nature. However, it is worth 
noting that Model №2 exhibits a signi�cant evolutionary 
advantage compared to Model №1. For a more realistic 
representation of these two models, an additional trait of the 
surroundings is required, namely a small random deviating �ow 
vector that is added to the actor's movement vector.

 Furthermore, Model №4 stands out from the group as it 
introduces the concept of associative learning. Although both 
functional inputs in this model are of the same type, they are 
bound to temporally symmetrical signals. Considering that 
associative learning has been observed in the simplest 
organisms we will further investigate this model as is [5]. We 
will demonstrate that the behavioral pattern of this model is 
very similar to that of Model №3 but its e�ectiveness is 
signi�cantly higher. Exploring this model with di�erent 
functional inputs, combining neutral and aversive stimuli to 
emulate a classical conditioning scenario, would be an engaging 
but optional task.

 Lastly, we examine how all these models respond to changes 
in the main characteristic, "resonant frequency" 𝐶1 and attempt 
to identify any correlation, if present, between this frequency 
and the density 𝑝 with the optimization task of maximizing the 
model's e�ectiveness.

All test environments are categorized into these groups (Table 
2):

Name Sample
1 Random,

Circles of various density and size

2 Symmetrical or continuous, 1st degree
Line or curve or scribble of
various density and size

3 Symmetrical or continuous, 2nd degree
Group of lines, curves and scribbles of various density and 
size

4 Mixed №1 and №2 or
№1 and №3

Table 2. Categorization of test environments in the virtual models.

Table 3. Correlation analysis types for kinematic models in virtual environments.

 For each combination of model and environment, we 
calculate                           based on a series of 1000 runs, with a 
95% con�dence level. Each run is time-limited. To assess the 
model's scalability quantitatively, we extend the initial size of 
the virtual environment linearly using multipliers of x2, x4, x8. 
�e complete virtual environment is implemented as an 
event-driven state machine, incorporating data collection, 
statistical analysis, and graphical representation powered by 
OpenGL. For more detailed information, please refer to the 
Data Availability section.

Results
In this section, we present the preliminary analysis of the 
kinematic models within the de�ned virtual environments. �e 
results focus on identifying correlations between various 
factors, such as the number of runs, model con�gurations, and 
environmental characteristics. �e analysis is intended to 
provide insights into the models' performance, scalability, and 
e�ectiveness in di�erent scenarios. �e following table outlines 
the types of correlations we aim to explore (Table 3).

 �e following �gures provide visual representations of 
the patterns and behaviors observed in the kinematic 
models as they interact with various virtual environments. 
Each �gure highlights a speci�c pattern or combination of 
patterns, showcasing how the models adapt their search and 
tracking strategies in response to di�erent environmental 
conditions. �ese illustrative graphs are essential for 
understanding the underlying mechanisms of the models 
and their potential applications in simulating natural 
computational behaviors:     
Discussion
We observed two distinct tactics of exploratory behavior: 
“tracking” (Figure 1), exhibited by all models, and “outward 
spiral” (Figure 2), discovered in the composite model, 3x1x2. 

�e combination of these tactics, when translated into the 
foraging strategy of primitive organisms, should encompass the 
following scenarios of resource availability:

• Normal resource availability level;
• Below-average level of resources;
• Above average, abundance of resources;

Figure 1. Tracking pattern around di�erent surroundings, pure 
tracking pattern.

Figure 2. Outward spiral/search pattern for the composite 
model, 3x1x2.

 Under normal circumstances, when the average amount of 
resources is gathered in symmetrical or linear structures, we 
observe a simple "tracking" pattern. However, when resource 
availability drops below a certain level, the system transitions 
into an "outward spiral" or "search" pattern, which is considered 
an e�cient search technique [9,10]. Additionally, there is a 
correlation between the amplitude excursion of the "tracking" 
pattern and resource density, o�en directly proportional 
(Figure 3). �is enhances the system's e�ciency in 
environments with 2nd-degree structures, such as symmetrical 
or continuous groups of lines, curves, and scribbles of various 
densities and sizes.

 �us, by applying phylogenetic principles to minimalistic 
kinematic models, we can explore a possible progression in 
systems that lack the ability to learn from experience. �ese 
systems can be described as "evolutionary trained" and may 
serve as precursors to more evolved organisms, such as C. 
Elegans, whose foraging strategy exhibits similarities to what we 
observe in our model [11]. While recent advances in integrative 
biological simulation of C. Elegans allow for modeling the 
strategy to some extent, the model does not provide an 
explanation for the origin of the behavior or the opportunity to 
observe it in less complex organisms [12]. We hypothesize that 
this behavior is ingrained into the control circuits at the lowest 
level, as it o�ers evolutionary advantages by facilitating 
cost-e�ective foraging.

Figure 3. Tracking pattern around di�erent surroundings, 
tracking/search pattern combined.

 It is important to note that the "tracking" tactic works more 
e�ectively in a more structured environment, allowing for 
�nding an optimal solution in polynomial time as the linear size 
of the environment increases. At the same time, the e�ciency of 
the model increases with its internal complexity, reaching a 
plateau in the con�guration Nx1x2, when N>5. When 
comparing the performance of models with a single input (1x2) 
and models with spatially divided inputs (2x2), we observe a 
signi�cant improvement in the latter, (Figures 4 vs 5). �is 
improvement is attributed to the model's ability to distinguish 
between the le� and right sides when approaching linearly 
congregated resources, resulting in fewer mistakes in 
determining directions.

Figure 5. Tracking pattern turning into a shrinking spiral 
around large objects. �e yellow trace, which highlights the 
traversed path, has been disabled for clarity.

 Foraging, as a distinct subgroup of classic AI search 
problems, has been extensively studied [13,14]. However, we 
want to emphasize that even with the underlying logic reduced 
to a few basic rules, we can still achieve the same goals while 
maintaining the neuromorphic structure of the network. �is 
network can be seen as a trivial case of spiking neural networks, 
lacking learning ability yet capable of discovering patterns. In 
this context, the transition to a Lévy type search strategy can be 
viewed as a switch between the "tracking" and "search" patterns 
explained earlier and illustrated in Figure 3 [15,16].

 Naturally, the model has certain limitations due to 
self-imposed restrictions on dimensionality and concurrency, 
which could take into account the role of competition for scarce 
resources among peers. However, the main factor that is 
excluded from consideration is the ability to save state to learn 
from experience. �e model cannot be trained in the 
conventional sense by repeatedly running it in the same 
environment. Nevertheless, it demonstrates structural 
development over longer evolutionary timeframes, suggesting a 
progression on an evolutionary scale. It would be an intriguing 
task to further investigate the evolution of such systems by 
adding more inputs (potentially responsive to aversive stimuli) 
and outputs, and applying formal natural selection rules, to 
create a higher-level "evolutionary trained" model [17].

 However, before delving into further development, it is 
important to understand how this "purely behavioral" model 
could be translated into a neural network model, considering 
certain restrictions that need to be enforced. �e suggested 
variant of the translation, as depicted in Figure 6, incorporates 
two distinct properties:

• A wide range of working frequencies is covered by the same 
topology, as the summarizing neuron will only spike when its 
input signals of varying frequencies coincide;

• By applying the Hebbian Rule [18] to certain inputs, it 
becomes possible to generate the required outputs for either 
part of the behavioral model's piecewise function 𝑓𝑖 < 𝐶1or 
𝑓𝑖 ≥ 𝐶1. �e shared input signal would trigger repeated 
generation through the feedback circuit. In the �rst case, this 
circuit takes priority, and subsequent shared input signals 
would not a�ect the frequency of the output signal, which is 
the multiplication of all circuit frequencies. In the other case, 
the shared input signal is prioritized, and every signal would 
start the generation process anew, resulting in an inde�nite 
delay in the output for a certain period;

Figure 6. Proposed behavioral model translation into a neural 
network model.

�us, this network fragment can ful�ll the requirements of both 
the 1x2 and composite 3x2x1 models serving as a basis for 
constructing a topologically uniform spiking neural network 
that describes the behavior of organisms trained by evolution to 
possess natural computational capabilities. 

 We hypothesize that these simple functional principles could 
also be applicable to more advanced species, such as ants, 
worms, ichnospecies, honeybees, and others, and we encourage 
further research into this type of natural neural network 
[19,20,21]. 

Conclusions
In conclusion, integrating simple spiking networks, each tuned 
to di�erent frequencies, into a composite model capable of 
replicating the complex track-and-search behavior observed in 
nature could o�er valuable insights into the foundational 
principles of intelligence. We hypothesize that the performance 
of these small-scale networks (We refer to them as “tuning 
forks” or camertones), when they all “play in tune and in 
harmony”, may surpass that of traditional arti�cial neural 
networks (ANNs) due to their evolutionary re�nement and 
minimal training requirements. �e learning mechanisms of 
such networks are likely to di�er signi�cantly from those of 
traditional ANNs, warranting further investigation to fully 
understand their unique learning processes.
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All code and data are publicly accessible at: 
https://github.com/FoundAItion-ai/Its
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Figure 4. Tracking pattern turning into a shrinking spiral 
around large objects, tracking pattern around object.
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In the �eld of arti�cial intelligence, arti�cial neural networks 
(ANNs) have traditionally been derived from brain dynamics, 
modeling neurons, synapses and their biological traits [1]. 
Biologically inspired computing is an integral part of natural 
computation, utilizing biology or biological processes as models 
to develop new computing technologies [2]. ANNs have been 
developed as generalizations of mathematical models of 
biological nervous systems and have achieved considerable 
success in applied science [3].

 However, recent discoveries have revealed natural 
computational capabilities in seemingly primitive life forms, 
such as the unicellular plasmodium of Physarum polycephalum. 
�is organism has garnered signi�cant attention due to its 
intriguing decentralized computing capabilities [4]. �rough 
morphing its amorphous body, the plasmodium actively 
searches for optimal routes among food sources, forms regular 
graphs, and anticipates periodic events. Remarkably, under 
certain conditions, it solves the traveling salesman problem 
(TSP), an NP-hard problem, by altering its shape to minimize 
exposure to aversive light stimuli. Surprisingly, it is capable of 
�nding reasonably high-quality TSP solutions within a time 
period that grows linearly with increasing problem size. 
Another important aspect of natural computational capabilities 
is associative learning, which refers to the process through 
which organisms learn the relationship between two distinct 
events. While this phenomenon has been extensively studied in 
animals, recent discoveries of associative learning in cnidarians 
[5], such as sea anemones and jelly�sh, which possess 
decentralized neural networks, suggest that the ability to classify 
data and analyze temporal event dependencies may be an 
inherent feature of all biological beings. Further research is 
required to develop and investigate models that explain these 
behaviors in their simplest forms, thus enabling a better 
understanding of the origin and evolution of cognition in 

general. Additionally, it would be valuable to retrospectively 
apply these newly discovered principles to existing ANN 
models to assess their compatibility in terms of topology and 
work�ow.

 �e key question driving our research is whether there is a 
common denominator among all biological systems capable of 
performing natural computations. �is common 
denominator should ful�ll two criteria: (a) it must be 
minimal, unable to be further reduced, and (b) it must be 
viable, enabling successful survival under speci�c 
environmental conditions. We hypothesize that there exist 
organisms, possibly less advanced than unicellular 
plasmodium or cnidarians, yet capable of performing natural 
computations in the manner we have described. Furthermore, 
we believe that their inherent behavioral properties can be 
explained by our model.

Methods
If we attempt to apply existing arti�cial neural networks to 
such simple life forms, we encounter various challenges. 
While biologically plausible spiking neural networks (SNNs) 
demonstrate strong performance with supervised learning 
methods [6,7], training SNNs using unsupervised learning 
proves di�cult due to the lack of clear objectives or metrics for 
optimization. Furthermore, we can question the applicability 
of SNNs to the simplest biological systems, as there is no 
evidence indicating that the functionality of neurons in such 
systems is not signi�cantly reduced or altered. Rather than 
focusing on constructing a speci�c neural network for this 
scenario, our goal is to understand how they should behave in 
order to gain an evolutionary advantage.

 In this section, we introduce several families of 
continuous-time rigid-body kinematic models in a virtual 
environment, ordered by complexity (Table 1):

 �e virtual environment is de�ned as a 2D plane populated 
with actors, which are kinematic models, as well as 
surroundings that can be consumed by the actors. �e 
surroundings possess a single characteristic, which is density, 0 
< 𝑝 < 1. �is density inversely impacts the terminal velocity of 
the actors as...       .... , assuming a constant virtual drag 
coe�cient and area [8]. Correspondingly �i=C*p*v . In this 
context, the model e�ciency (later referred to as "e�ectiveness") 
can be naturally de�ned within a given time interval as                                   
.                 ..., provided that the incoming signal frequency 
remains constant. �is e�ectiveness value can be integrated 
over any period 

 We have excluded both Model №1 and №2 from further 
considerations due to their trivial nature. However, it is worth 
noting that Model №2 exhibits a signi�cant evolutionary 
advantage compared to Model №1. For a more realistic 
representation of these two models, an additional trait of the 
surroundings is required, namely a small random deviating �ow 
vector that is added to the actor's movement vector.

 Furthermore, Model №4 stands out from the group as it 
introduces the concept of associative learning. Although both 
functional inputs in this model are of the same type, they are 
bound to temporally symmetrical signals. Considering that 
associative learning has been observed in the simplest 
organisms we will further investigate this model as is [5]. We 
will demonstrate that the behavioral pattern of this model is 
very similar to that of Model №3 but its e�ectiveness is 
signi�cantly higher. Exploring this model with di�erent 
functional inputs, combining neutral and aversive stimuli to 
emulate a classical conditioning scenario, would be an engaging 
but optional task.

 Lastly, we examine how all these models respond to changes 
in the main characteristic, "resonant frequency" 𝐶1 and attempt 
to identify any correlation, if present, between this frequency 
and the density 𝑝 with the optimization task of maximizing the 
model's e�ectiveness.

All test environments are categorized into these groups (Table 
2):

 For each combination of model and environment, we 
calculate                           based on a series of 1000 runs, with a 
95% con�dence level. Each run is time-limited. To assess the 
model's scalability quantitatively, we extend the initial size of 
the virtual environment linearly using multipliers of x2, x4, x8. 
�e complete virtual environment is implemented as an 
event-driven state machine, incorporating data collection, 
statistical analysis, and graphical representation powered by 
OpenGL. For more detailed information, please refer to the 
Data Availability section.

Results
In this section, we present the preliminary analysis of the 
kinematic models within the de�ned virtual environments. �e 
results focus on identifying correlations between various 
factors, such as the number of runs, model con�gurations, and 
environmental characteristics. �e analysis is intended to 
provide insights into the models' performance, scalability, and 
e�ectiveness in di�erent scenarios. �e following table outlines 
the types of correlations we aim to explore (Table 3).

 �e following �gures provide visual representations of 
the patterns and behaviors observed in the kinematic 
models as they interact with various virtual environments. 
Each �gure highlights a speci�c pattern or combination of 
patterns, showcasing how the models adapt their search and 
tracking strategies in response to di�erent environmental 
conditions. �ese illustrative graphs are essential for 
understanding the underlying mechanisms of the models 
and their potential applications in simulating natural 
computational behaviors:     
Discussion
We observed two distinct tactics of exploratory behavior: 
“tracking” (Figure 1), exhibited by all models, and “outward 
spiral” (Figure 2), discovered in the composite model, 3x1x2. 

�e combination of these tactics, when translated into the 
foraging strategy of primitive organisms, should encompass the 
following scenarios of resource availability:

• Normal resource availability level;
• Below-average level of resources;
• Above average, abundance of resources;

Figure 1. Tracking pattern around di�erent surroundings, pure 
tracking pattern.

Figure 2. Outward spiral/search pattern for the composite 
model, 3x1x2.

 Under normal circumstances, when the average amount of 
resources is gathered in symmetrical or linear structures, we 
observe a simple "tracking" pattern. However, when resource 
availability drops below a certain level, the system transitions 
into an "outward spiral" or "search" pattern, which is considered 
an e�cient search technique [9,10]. Additionally, there is a 
correlation between the amplitude excursion of the "tracking" 
pattern and resource density, o�en directly proportional 
(Figure 3). �is enhances the system's e�ciency in 
environments with 2nd-degree structures, such as symmetrical 
or continuous groups of lines, curves, and scribbles of various 
densities and sizes.

 �us, by applying phylogenetic principles to minimalistic 
kinematic models, we can explore a possible progression in 
systems that lack the ability to learn from experience. �ese 
systems can be described as "evolutionary trained" and may 
serve as precursors to more evolved organisms, such as C. 
Elegans, whose foraging strategy exhibits similarities to what we 
observe in our model [11]. While recent advances in integrative 
biological simulation of C. Elegans allow for modeling the 
strategy to some extent, the model does not provide an 
explanation for the origin of the behavior or the opportunity to 
observe it in less complex organisms [12]. We hypothesize that 
this behavior is ingrained into the control circuits at the lowest 
level, as it o�ers evolutionary advantages by facilitating 
cost-e�ective foraging.

Figure 3. Tracking pattern around di�erent surroundings, 
tracking/search pattern combined.

 It is important to note that the "tracking" tactic works more 
e�ectively in a more structured environment, allowing for 
�nding an optimal solution in polynomial time as the linear size 
of the environment increases. At the same time, the e�ciency of 
the model increases with its internal complexity, reaching a 
plateau in the con�guration Nx1x2, when N>5. When 
comparing the performance of models with a single input (1x2) 
and models with spatially divided inputs (2x2), we observe a 
signi�cant improvement in the latter, (Figures 4 vs 5). �is 
improvement is attributed to the model's ability to distinguish 
between the le� and right sides when approaching linearly 
congregated resources, resulting in fewer mistakes in 
determining directions.

Figure 5. Tracking pattern turning into a shrinking spiral 
around large objects. �e yellow trace, which highlights the 
traversed path, has been disabled for clarity.

 Foraging, as a distinct subgroup of classic AI search 
problems, has been extensively studied [13,14]. However, we 
want to emphasize that even with the underlying logic reduced 
to a few basic rules, we can still achieve the same goals while 
maintaining the neuromorphic structure of the network. �is 
network can be seen as a trivial case of spiking neural networks, 
lacking learning ability yet capable of discovering patterns. In 
this context, the transition to a Lévy type search strategy can be 
viewed as a switch between the "tracking" and "search" patterns 
explained earlier and illustrated in Figure 3 [15,16].

 Naturally, the model has certain limitations due to 
self-imposed restrictions on dimensionality and concurrency, 
which could take into account the role of competition for scarce 
resources among peers. However, the main factor that is 
excluded from consideration is the ability to save state to learn 
from experience. �e model cannot be trained in the 
conventional sense by repeatedly running it in the same 
environment. Nevertheless, it demonstrates structural 
development over longer evolutionary timeframes, suggesting a 
progression on an evolutionary scale. It would be an intriguing 
task to further investigate the evolution of such systems by 
adding more inputs (potentially responsive to aversive stimuli) 
and outputs, and applying formal natural selection rules, to 
create a higher-level "evolutionary trained" model [17].

 However, before delving into further development, it is 
important to understand how this "purely behavioral" model 
could be translated into a neural network model, considering 
certain restrictions that need to be enforced. �e suggested 
variant of the translation, as depicted in Figure 6, incorporates 
two distinct properties:

• A wide range of working frequencies is covered by the same 
topology, as the summarizing neuron will only spike when its 
input signals of varying frequencies coincide;

• By applying the Hebbian Rule [18] to certain inputs, it 
becomes possible to generate the required outputs for either 
part of the behavioral model's piecewise function 𝑓𝑖 < 𝐶1or 
𝑓𝑖 ≥ 𝐶1. �e shared input signal would trigger repeated 
generation through the feedback circuit. In the �rst case, this 
circuit takes priority, and subsequent shared input signals 
would not a�ect the frequency of the output signal, which is 
the multiplication of all circuit frequencies. In the other case, 
the shared input signal is prioritized, and every signal would 
start the generation process anew, resulting in an inde�nite 
delay in the output for a certain period;

Figure 6. Proposed behavioral model translation into a neural 
network model.

�us, this network fragment can ful�ll the requirements of both 
the 1x2 and composite 3x2x1 models serving as a basis for 
constructing a topologically uniform spiking neural network 
that describes the behavior of organisms trained by evolution to 
possess natural computational capabilities. 

 We hypothesize that these simple functional principles could 
also be applicable to more advanced species, such as ants, 
worms, ichnospecies, honeybees, and others, and we encourage 
further research into this type of natural neural network 
[19,20,21]. 

Conclusions
In conclusion, integrating simple spiking networks, each tuned 
to di�erent frequencies, into a composite model capable of 
replicating the complex track-and-search behavior observed in 
nature could o�er valuable insights into the foundational 
principles of intelligence. We hypothesize that the performance 
of these small-scale networks (We refer to them as “tuning 
forks” or camertones), when they all “play in tune and in 
harmony”, may surpass that of traditional arti�cial neural 
networks (ANNs) due to their evolutionary re�nement and 
minimal training requirements. �e learning mechanisms of 
such networks are likely to di�er signi�cantly from those of 
traditional ANNs, warranting further investigation to fully 
understand their unique learning processes.

Data availability
All code and data are publicly accessible at: 
https://github.com/FoundAItion-ai/Its
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No potential con�ict of interest was reported by the author.

References
1. Eliasmith C. How to build a brain: A neural architecture for 

biological cognition. OUP USA. 2013.
2. Dash N, Priyadarshini R, Mishra BK, Misra R. Bio-inspired 

computing through arti�cial neural network. In Fuzzy Systems: 
Concepts, Methodologies, Tools, and Applications 2017; 
1285-1313. 

3. Gerstner W, Kistler WM, Naud R Paninski L. Neuronal dynamics: 
From single neurons to networks and models of cognition. 
Cambridge University Press. 2014.

4. Zhu L, Kim SJ, Hara M, Aono M. Remarkable problem-solving 
ability of unicellular amoeboid organism and its mechanism. Royal 
Society Open Science. 2018;5(12):180396.                         . 
https://doi.org/10.1098/rsos.180396

5. Botton-Amiot G, Martinez P, Sprecher SG. Associative learning in 
the cnidarian Nematostella vectensis. Proceedings of the National 
Academy of Sciences. 2023;120(13):e2220685120.                        .  
https://doi.org/10.1073/pnas.2220685120 

6. Hao Y, Huang X, Dong M, Xu B. A biologically plausible 
supervised learning method for spiking neural networks using the 
symmetric STDP rule. Neural Networks. 2020;121:387-395. 
https://doi.org/10.1016/j.neunet.2019.09.007 .

7. Kasabov NK. NeuCube: A spiking neural network architecture for 
mapping, learning and understanding of spatio-temporal brain 
data. Neural Networks. 2014;52:62-76.                        .  
https://doi.org/10.1016/j.neunet.2014.01.006 

8. White FM. Fluid Mechanics. ISBN 978-0-07-352934-352939. 
Available at:                         . 
http://�p.demec.ufpr.br/disciplinas/TM240/Marchi/Bibliogra�a/
White_2011_7ed_Fluid-Mechanics.pdf 

9. Burlington S, Dudek G. Spiral search as an e�cient mobile robotic 
search technique. In Proceedings of the 16th National Conf. on AI, 
Orlando Fl. 1999. 

10. Langetepe E. On the optimality of spiral search. In Proceedings of 
the twenty-�rst annual ACM-SIAM symposium on Discrete 
Algorithms. Society for Industrial and Applied Mathematics. 
2010;1-12. 

11. Calhoun AJ, Chalasani SH, Sharpee TO. Maximally informative 
foraging by Caenorhabditis elegans. Elife. 2014;3:e04220. 
https://doi.org/10.7554/eLife.04220.001

12. Sarma GP, Lee CW, Portegys T, Ghayoomie V, Jacobs T, Alicea B, et 
al. OpenWorm: overview and recent advances in integrative 
biological simulation of Caenorhabditis elegans. Philosophical 
Transactions of the Royal Society B. 2018;373(1758):20170382. 
https://doi.org/10.1098/rstb.2017.0382 . 

13. Win�eld AF. Foraging robots. Encyclopedia of complexity and 
systems science. 2009;6:3682-3700.                        .  
https://doi.org/10.1007/978-0-387-30440-3_217 .

14. Zedadra O, Seridi H, Jouandeau N, Fortino G. An energy-aware 
algorithm for large scale foraging systems. Scalable Computing: 
Practice and Experience. 2015;16(4):449-466.                        .  
https://doi.org/10.12694/scpe.v16i4.1133

15. Reynolds AM, Rhodes CJ. �e Lévy �ight paradigm: random 
search patterns and mechanisms. Ecology. 2009;90(4):877-887. 
https://doi.org/10.1890/08-0153.1

16. Murakami H, Gunji YP. Autonomous change of behavior for 
environmental context: An intermittent search model with 
misunderstanding search pattern. Math Methods Appl Sci. 
2017;40(18):7013-7021. https://doi.org/10.1002/mma.4508

17. �ompson A, Harvey I, Husbands P. �e natural way to evolve 
hardware. In1996 IEEE International Symposium on Circuits and 
Systems. Circuits and Systems Connecting the World. ISCAS 96. 
IEEE. 1996;(4):37-40. https://doi.org/10.1109/ISCAS.1996.541895

18. Hebb DO. �e organization of behavior: A neuropsychological 
theory. Psychology press. 2002.                        .  
https://doi.org/10.4324/9781410612403

19. Müller M, Wehner R. Path integration in desert ants, Cataglyphis 
fortis. Proceedings of the National Academy of Sciences. 
1988;85(14):5287-5290. https://doi.org/10.1073/pnas.85.14.5287 

20. Hayes B. Computing science: In search of the optimal 
Scumsucking Bottomfeeder. American Scientist. 
2003;91(5):392-396. Available at:                        .  
https://www.jstor.org/stable/27858267 

21. Müller M, Wehner R. Path integration in desert ants, Cataglyphis 
fortis. Proceedings of the National Academy of Sciences. 
1988;85(14):5287-5290. https://doi.org/10.1073/pnas.85.14.5287

Figure 4. Tracking pattern turning into a shrinking spiral 
around large objects, tracking pattern around object.

J. Artif. Intell. Robot., 2024, 1, 12-17 © Reseapro Journals 2024
https://doi.org/10.61577/jaiar.2024.1000015

JOURNAL OF ARTIFICIAL INTELLIGENCE AND ROBOTICS                              
2024, VOL. 1, ISSUE 3

15



In the �eld of arti�cial intelligence, arti�cial neural networks 
(ANNs) have traditionally been derived from brain dynamics, 
modeling neurons, synapses and their biological traits [1]. 
Biologically inspired computing is an integral part of natural 
computation, utilizing biology or biological processes as models 
to develop new computing technologies [2]. ANNs have been 
developed as generalizations of mathematical models of 
biological nervous systems and have achieved considerable 
success in applied science [3].

 However, recent discoveries have revealed natural 
computational capabilities in seemingly primitive life forms, 
such as the unicellular plasmodium of Physarum polycephalum. 
�is organism has garnered signi�cant attention due to its 
intriguing decentralized computing capabilities [4]. �rough 
morphing its amorphous body, the plasmodium actively 
searches for optimal routes among food sources, forms regular 
graphs, and anticipates periodic events. Remarkably, under 
certain conditions, it solves the traveling salesman problem 
(TSP), an NP-hard problem, by altering its shape to minimize 
exposure to aversive light stimuli. Surprisingly, it is capable of 
�nding reasonably high-quality TSP solutions within a time 
period that grows linearly with increasing problem size. 
Another important aspect of natural computational capabilities 
is associative learning, which refers to the process through 
which organisms learn the relationship between two distinct 
events. While this phenomenon has been extensively studied in 
animals, recent discoveries of associative learning in cnidarians 
[5], such as sea anemones and jelly�sh, which possess 
decentralized neural networks, suggest that the ability to classify 
data and analyze temporal event dependencies may be an 
inherent feature of all biological beings. Further research is 
required to develop and investigate models that explain these 
behaviors in their simplest forms, thus enabling a better 
understanding of the origin and evolution of cognition in 

general. Additionally, it would be valuable to retrospectively 
apply these newly discovered principles to existing ANN 
models to assess their compatibility in terms of topology and 
work�ow.

 �e key question driving our research is whether there is a 
common denominator among all biological systems capable of 
performing natural computations. �is common 
denominator should ful�ll two criteria: (a) it must be 
minimal, unable to be further reduced, and (b) it must be 
viable, enabling successful survival under speci�c 
environmental conditions. We hypothesize that there exist 
organisms, possibly less advanced than unicellular 
plasmodium or cnidarians, yet capable of performing natural 
computations in the manner we have described. Furthermore, 
we believe that their inherent behavioral properties can be 
explained by our model.

Methods
If we attempt to apply existing arti�cial neural networks to 
such simple life forms, we encounter various challenges. 
While biologically plausible spiking neural networks (SNNs) 
demonstrate strong performance with supervised learning 
methods [6,7], training SNNs using unsupervised learning 
proves di�cult due to the lack of clear objectives or metrics for 
optimization. Furthermore, we can question the applicability 
of SNNs to the simplest biological systems, as there is no 
evidence indicating that the functionality of neurons in such 
systems is not signi�cantly reduced or altered. Rather than 
focusing on constructing a speci�c neural network for this 
scenario, our goal is to understand how they should behave in 
order to gain an evolutionary advantage.

 In this section, we introduce several families of 
continuous-time rigid-body kinematic models in a virtual 
environment, ordered by complexity (Table 1):

 �e virtual environment is de�ned as a 2D plane populated 
with actors, which are kinematic models, as well as 
surroundings that can be consumed by the actors. �e 
surroundings possess a single characteristic, which is density, 0 
< 𝑝 < 1. �is density inversely impacts the terminal velocity of 
the actors as...       .... , assuming a constant virtual drag 
coe�cient and area [8]. Correspondingly �i=C*p*v . In this 
context, the model e�ciency (later referred to as "e�ectiveness") 
can be naturally de�ned within a given time interval as                                   
.                 ..., provided that the incoming signal frequency 
remains constant. �is e�ectiveness value can be integrated 
over any period 

 We have excluded both Model №1 and №2 from further 
considerations due to their trivial nature. However, it is worth 
noting that Model №2 exhibits a signi�cant evolutionary 
advantage compared to Model №1. For a more realistic 
representation of these two models, an additional trait of the 
surroundings is required, namely a small random deviating �ow 
vector that is added to the actor's movement vector.

 Furthermore, Model №4 stands out from the group as it 
introduces the concept of associative learning. Although both 
functional inputs in this model are of the same type, they are 
bound to temporally symmetrical signals. Considering that 
associative learning has been observed in the simplest 
organisms we will further investigate this model as is [5]. We 
will demonstrate that the behavioral pattern of this model is 
very similar to that of Model №3 but its e�ectiveness is 
signi�cantly higher. Exploring this model with di�erent 
functional inputs, combining neutral and aversive stimuli to 
emulate a classical conditioning scenario, would be an engaging 
but optional task.

 Lastly, we examine how all these models respond to changes 
in the main characteristic, "resonant frequency" 𝐶1 and attempt 
to identify any correlation, if present, between this frequency 
and the density 𝑝 with the optimization task of maximizing the 
model's e�ectiveness.

All test environments are categorized into these groups (Table 
2):

 For each combination of model and environment, we 
calculate                           based on a series of 1000 runs, with a 
95% con�dence level. Each run is time-limited. To assess the 
model's scalability quantitatively, we extend the initial size of 
the virtual environment linearly using multipliers of x2, x4, x8. 
�e complete virtual environment is implemented as an 
event-driven state machine, incorporating data collection, 
statistical analysis, and graphical representation powered by 
OpenGL. For more detailed information, please refer to the 
Data Availability section.

Results
In this section, we present the preliminary analysis of the 
kinematic models within the de�ned virtual environments. �e 
results focus on identifying correlations between various 
factors, such as the number of runs, model con�gurations, and 
environmental characteristics. �e analysis is intended to 
provide insights into the models' performance, scalability, and 
e�ectiveness in di�erent scenarios. �e following table outlines 
the types of correlations we aim to explore (Table 3).

 �e following �gures provide visual representations of 
the patterns and behaviors observed in the kinematic 
models as they interact with various virtual environments. 
Each �gure highlights a speci�c pattern or combination of 
patterns, showcasing how the models adapt their search and 
tracking strategies in response to di�erent environmental 
conditions. �ese illustrative graphs are essential for 
understanding the underlying mechanisms of the models 
and their potential applications in simulating natural 
computational behaviors:     
Discussion
We observed two distinct tactics of exploratory behavior: 
“tracking” (Figure 1), exhibited by all models, and “outward 
spiral” (Figure 2), discovered in the composite model, 3x1x2. 

�e combination of these tactics, when translated into the 
foraging strategy of primitive organisms, should encompass the 
following scenarios of resource availability:

• Normal resource availability level;
• Below-average level of resources;
• Above average, abundance of resources;

Figure 1. Tracking pattern around di�erent surroundings, pure 
tracking pattern.

Figure 2. Outward spiral/search pattern for the composite 
model, 3x1x2.

 Under normal circumstances, when the average amount of 
resources is gathered in symmetrical or linear structures, we 
observe a simple "tracking" pattern. However, when resource 
availability drops below a certain level, the system transitions 
into an "outward spiral" or "search" pattern, which is considered 
an e�cient search technique [9,10]. Additionally, there is a 
correlation between the amplitude excursion of the "tracking" 
pattern and resource density, o�en directly proportional 
(Figure 3). �is enhances the system's e�ciency in 
environments with 2nd-degree structures, such as symmetrical 
or continuous groups of lines, curves, and scribbles of various 
densities and sizes.

 �us, by applying phylogenetic principles to minimalistic 
kinematic models, we can explore a possible progression in 
systems that lack the ability to learn from experience. �ese 
systems can be described as "evolutionary trained" and may 
serve as precursors to more evolved organisms, such as C. 
Elegans, whose foraging strategy exhibits similarities to what we 
observe in our model [11]. While recent advances in integrative 
biological simulation of C. Elegans allow for modeling the 
strategy to some extent, the model does not provide an 
explanation for the origin of the behavior or the opportunity to 
observe it in less complex organisms [12]. We hypothesize that 
this behavior is ingrained into the control circuits at the lowest 
level, as it o�ers evolutionary advantages by facilitating 
cost-e�ective foraging.

Figure 3. Tracking pattern around di�erent surroundings, 
tracking/search pattern combined.

 It is important to note that the "tracking" tactic works more 
e�ectively in a more structured environment, allowing for 
�nding an optimal solution in polynomial time as the linear size 
of the environment increases. At the same time, the e�ciency of 
the model increases with its internal complexity, reaching a 
plateau in the con�guration Nx1x2, when N>5. When 
comparing the performance of models with a single input (1x2) 
and models with spatially divided inputs (2x2), we observe a 
signi�cant improvement in the latter, (Figures 4 vs 5). �is 
improvement is attributed to the model's ability to distinguish 
between the le� and right sides when approaching linearly 
congregated resources, resulting in fewer mistakes in 
determining directions.

Figure 5. Tracking pattern turning into a shrinking spiral 
around large objects. �e yellow trace, which highlights the 
traversed path, has been disabled for clarity.

 Foraging, as a distinct subgroup of classic AI search 
problems, has been extensively studied [13,14]. However, we 
want to emphasize that even with the underlying logic reduced 
to a few basic rules, we can still achieve the same goals while 
maintaining the neuromorphic structure of the network. �is 
network can be seen as a trivial case of spiking neural networks, 
lacking learning ability yet capable of discovering patterns. In 
this context, the transition to a Lévy type search strategy can be 
viewed as a switch between the "tracking" and "search" patterns 
explained earlier and illustrated in Figure 3 [15,16].

 Naturally, the model has certain limitations due to 
self-imposed restrictions on dimensionality and concurrency, 
which could take into account the role of competition for scarce 
resources among peers. However, the main factor that is 
excluded from consideration is the ability to save state to learn 
from experience. �e model cannot be trained in the 
conventional sense by repeatedly running it in the same 
environment. Nevertheless, it demonstrates structural 
development over longer evolutionary timeframes, suggesting a 
progression on an evolutionary scale. It would be an intriguing 
task to further investigate the evolution of such systems by 
adding more inputs (potentially responsive to aversive stimuli) 
and outputs, and applying formal natural selection rules, to 
create a higher-level "evolutionary trained" model [17].

 However, before delving into further development, it is 
important to understand how this "purely behavioral" model 
could be translated into a neural network model, considering 
certain restrictions that need to be enforced. �e suggested 
variant of the translation, as depicted in Figure 6, incorporates 
two distinct properties:

• A wide range of working frequencies is covered by the same 
topology, as the summarizing neuron will only spike when its 
input signals of varying frequencies coincide;

• By applying the Hebbian Rule [18] to certain inputs, it 
becomes possible to generate the required outputs for either 
part of the behavioral model's piecewise function 𝑓𝑖 < 𝐶1or 
𝑓𝑖 ≥ 𝐶1. �e shared input signal would trigger repeated 
generation through the feedback circuit. In the �rst case, this 
circuit takes priority, and subsequent shared input signals 
would not a�ect the frequency of the output signal, which is 
the multiplication of all circuit frequencies. In the other case, 
the shared input signal is prioritized, and every signal would 
start the generation process anew, resulting in an inde�nite 
delay in the output for a certain period;

Figure 6. Proposed behavioral model translation into a neural 
network model.

�us, this network fragment can ful�ll the requirements of both 
the 1x2 and composite 3x2x1 models serving as a basis for 
constructing a topologically uniform spiking neural network 
that describes the behavior of organisms trained by evolution to 
possess natural computational capabilities. 

 We hypothesize that these simple functional principles could 
also be applicable to more advanced species, such as ants, 
worms, ichnospecies, honeybees, and others, and we encourage 
further research into this type of natural neural network 
[19,20,21]. 

Conclusions
In conclusion, integrating simple spiking networks, each tuned 
to di�erent frequencies, into a composite model capable of 
replicating the complex track-and-search behavior observed in 
nature could o�er valuable insights into the foundational 
principles of intelligence. We hypothesize that the performance 
of these small-scale networks (We refer to them as “tuning 
forks” or camertones), when they all “play in tune and in 
harmony”, may surpass that of traditional arti�cial neural 
networks (ANNs) due to their evolutionary re�nement and 
minimal training requirements. �e learning mechanisms of 
such networks are likely to di�er signi�cantly from those of 
traditional ANNs, warranting further investigation to fully 
understand their unique learning processes.

Data availability
All code and data are publicly accessible at: 
https://github.com/FoundAItion-ai/Its
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In the �eld of arti�cial intelligence, arti�cial neural networks 
(ANNs) have traditionally been derived from brain dynamics, 
modeling neurons, synapses and their biological traits [1]. 
Biologically inspired computing is an integral part of natural 
computation, utilizing biology or biological processes as models 
to develop new computing technologies [2]. ANNs have been 
developed as generalizations of mathematical models of 
biological nervous systems and have achieved considerable 
success in applied science [3].

 However, recent discoveries have revealed natural 
computational capabilities in seemingly primitive life forms, 
such as the unicellular plasmodium of Physarum polycephalum. 
�is organism has garnered signi�cant attention due to its 
intriguing decentralized computing capabilities [4]. �rough 
morphing its amorphous body, the plasmodium actively 
searches for optimal routes among food sources, forms regular 
graphs, and anticipates periodic events. Remarkably, under 
certain conditions, it solves the traveling salesman problem 
(TSP), an NP-hard problem, by altering its shape to minimize 
exposure to aversive light stimuli. Surprisingly, it is capable of 
�nding reasonably high-quality TSP solutions within a time 
period that grows linearly with increasing problem size. 
Another important aspect of natural computational capabilities 
is associative learning, which refers to the process through 
which organisms learn the relationship between two distinct 
events. While this phenomenon has been extensively studied in 
animals, recent discoveries of associative learning in cnidarians 
[5], such as sea anemones and jelly�sh, which possess 
decentralized neural networks, suggest that the ability to classify 
data and analyze temporal event dependencies may be an 
inherent feature of all biological beings. Further research is 
required to develop and investigate models that explain these 
behaviors in their simplest forms, thus enabling a better 
understanding of the origin and evolution of cognition in 

general. Additionally, it would be valuable to retrospectively 
apply these newly discovered principles to existing ANN 
models to assess their compatibility in terms of topology and 
work�ow.

 �e key question driving our research is whether there is a 
common denominator among all biological systems capable of 
performing natural computations. �is common 
denominator should ful�ll two criteria: (a) it must be 
minimal, unable to be further reduced, and (b) it must be 
viable, enabling successful survival under speci�c 
environmental conditions. We hypothesize that there exist 
organisms, possibly less advanced than unicellular 
plasmodium or cnidarians, yet capable of performing natural 
computations in the manner we have described. Furthermore, 
we believe that their inherent behavioral properties can be 
explained by our model.

Methods
If we attempt to apply existing arti�cial neural networks to 
such simple life forms, we encounter various challenges. 
While biologically plausible spiking neural networks (SNNs) 
demonstrate strong performance with supervised learning 
methods [6,7], training SNNs using unsupervised learning 
proves di�cult due to the lack of clear objectives or metrics for 
optimization. Furthermore, we can question the applicability 
of SNNs to the simplest biological systems, as there is no 
evidence indicating that the functionality of neurons in such 
systems is not signi�cantly reduced or altered. Rather than 
focusing on constructing a speci�c neural network for this 
scenario, our goal is to understand how they should behave in 
order to gain an evolutionary advantage.

 In this section, we introduce several families of 
continuous-time rigid-body kinematic models in a virtual 
environment, ordered by complexity (Table 1):

 �e virtual environment is de�ned as a 2D plane populated 
with actors, which are kinematic models, as well as 
surroundings that can be consumed by the actors. �e 
surroundings possess a single characteristic, which is density, 0 
< 𝑝 < 1. �is density inversely impacts the terminal velocity of 
the actors as...       .... , assuming a constant virtual drag 
coe�cient and area [8]. Correspondingly �i=C*p*v . In this 
context, the model e�ciency (later referred to as "e�ectiveness") 
can be naturally de�ned within a given time interval as                                   
.                 ..., provided that the incoming signal frequency 
remains constant. �is e�ectiveness value can be integrated 
over any period 

 We have excluded both Model №1 and №2 from further 
considerations due to their trivial nature. However, it is worth 
noting that Model №2 exhibits a signi�cant evolutionary 
advantage compared to Model №1. For a more realistic 
representation of these two models, an additional trait of the 
surroundings is required, namely a small random deviating �ow 
vector that is added to the actor's movement vector.

 Furthermore, Model №4 stands out from the group as it 
introduces the concept of associative learning. Although both 
functional inputs in this model are of the same type, they are 
bound to temporally symmetrical signals. Considering that 
associative learning has been observed in the simplest 
organisms we will further investigate this model as is [5]. We 
will demonstrate that the behavioral pattern of this model is 
very similar to that of Model №3 but its e�ectiveness is 
signi�cantly higher. Exploring this model with di�erent 
functional inputs, combining neutral and aversive stimuli to 
emulate a classical conditioning scenario, would be an engaging 
but optional task.

 Lastly, we examine how all these models respond to changes 
in the main characteristic, "resonant frequency" 𝐶1 and attempt 
to identify any correlation, if present, between this frequency 
and the density 𝑝 with the optimization task of maximizing the 
model's e�ectiveness.

All test environments are categorized into these groups (Table 
2):

 For each combination of model and environment, we 
calculate                           based on a series of 1000 runs, with a 
95% con�dence level. Each run is time-limited. To assess the 
model's scalability quantitatively, we extend the initial size of 
the virtual environment linearly using multipliers of x2, x4, x8. 
�e complete virtual environment is implemented as an 
event-driven state machine, incorporating data collection, 
statistical analysis, and graphical representation powered by 
OpenGL. For more detailed information, please refer to the 
Data Availability section.

Results
In this section, we present the preliminary analysis of the 
kinematic models within the de�ned virtual environments. �e 
results focus on identifying correlations between various 
factors, such as the number of runs, model con�gurations, and 
environmental characteristics. �e analysis is intended to 
provide insights into the models' performance, scalability, and 
e�ectiveness in di�erent scenarios. �e following table outlines 
the types of correlations we aim to explore (Table 3).

 �e following �gures provide visual representations of 
the patterns and behaviors observed in the kinematic 
models as they interact with various virtual environments. 
Each �gure highlights a speci�c pattern or combination of 
patterns, showcasing how the models adapt their search and 
tracking strategies in response to di�erent environmental 
conditions. �ese illustrative graphs are essential for 
understanding the underlying mechanisms of the models 
and their potential applications in simulating natural 
computational behaviors:     
Discussion
We observed two distinct tactics of exploratory behavior: 
“tracking” (Figure 1), exhibited by all models, and “outward 
spiral” (Figure 2), discovered in the composite model, 3x1x2. 

�e combination of these tactics, when translated into the 
foraging strategy of primitive organisms, should encompass the 
following scenarios of resource availability:

• Normal resource availability level;
• Below-average level of resources;
• Above average, abundance of resources;

Figure 1. Tracking pattern around di�erent surroundings, pure 
tracking pattern.

Figure 2. Outward spiral/search pattern for the composite 
model, 3x1x2.

 Under normal circumstances, when the average amount of 
resources is gathered in symmetrical or linear structures, we 
observe a simple "tracking" pattern. However, when resource 
availability drops below a certain level, the system transitions 
into an "outward spiral" or "search" pattern, which is considered 
an e�cient search technique [9,10]. Additionally, there is a 
correlation between the amplitude excursion of the "tracking" 
pattern and resource density, o�en directly proportional 
(Figure 3). �is enhances the system's e�ciency in 
environments with 2nd-degree structures, such as symmetrical 
or continuous groups of lines, curves, and scribbles of various 
densities and sizes.

 �us, by applying phylogenetic principles to minimalistic 
kinematic models, we can explore a possible progression in 
systems that lack the ability to learn from experience. �ese 
systems can be described as "evolutionary trained" and may 
serve as precursors to more evolved organisms, such as C. 
Elegans, whose foraging strategy exhibits similarities to what we 
observe in our model [11]. While recent advances in integrative 
biological simulation of C. Elegans allow for modeling the 
strategy to some extent, the model does not provide an 
explanation for the origin of the behavior or the opportunity to 
observe it in less complex organisms [12]. We hypothesize that 
this behavior is ingrained into the control circuits at the lowest 
level, as it o�ers evolutionary advantages by facilitating 
cost-e�ective foraging.

Figure 3. Tracking pattern around di�erent surroundings, 
tracking/search pattern combined.

 It is important to note that the "tracking" tactic works more 
e�ectively in a more structured environment, allowing for 
�nding an optimal solution in polynomial time as the linear size 
of the environment increases. At the same time, the e�ciency of 
the model increases with its internal complexity, reaching a 
plateau in the con�guration Nx1x2, when N>5. When 
comparing the performance of models with a single input (1x2) 
and models with spatially divided inputs (2x2), we observe a 
signi�cant improvement in the latter, (Figures 4 vs 5). �is 
improvement is attributed to the model's ability to distinguish 
between the le� and right sides when approaching linearly 
congregated resources, resulting in fewer mistakes in 
determining directions.

Figure 5. Tracking pattern turning into a shrinking spiral 
around large objects. �e yellow trace, which highlights the 
traversed path, has been disabled for clarity.

 Foraging, as a distinct subgroup of classic AI search 
problems, has been extensively studied [13,14]. However, we 
want to emphasize that even with the underlying logic reduced 
to a few basic rules, we can still achieve the same goals while 
maintaining the neuromorphic structure of the network. �is 
network can be seen as a trivial case of spiking neural networks, 
lacking learning ability yet capable of discovering patterns. In 
this context, the transition to a Lévy type search strategy can be 
viewed as a switch between the "tracking" and "search" patterns 
explained earlier and illustrated in Figure 3 [15,16].

 Naturally, the model has certain limitations due to 
self-imposed restrictions on dimensionality and concurrency, 
which could take into account the role of competition for scarce 
resources among peers. However, the main factor that is 
excluded from consideration is the ability to save state to learn 
from experience. �e model cannot be trained in the 
conventional sense by repeatedly running it in the same 
environment. Nevertheless, it demonstrates structural 
development over longer evolutionary timeframes, suggesting a 
progression on an evolutionary scale. It would be an intriguing 
task to further investigate the evolution of such systems by 
adding more inputs (potentially responsive to aversive stimuli) 
and outputs, and applying formal natural selection rules, to 
create a higher-level "evolutionary trained" model [17].

 However, before delving into further development, it is 
important to understand how this "purely behavioral" model 
could be translated into a neural network model, considering 
certain restrictions that need to be enforced. �e suggested 
variant of the translation, as depicted in Figure 6, incorporates 
two distinct properties:

• A wide range of working frequencies is covered by the same 
topology, as the summarizing neuron will only spike when its 
input signals of varying frequencies coincide;

• By applying the Hebbian Rule [18] to certain inputs, it 
becomes possible to generate the required outputs for either 
part of the behavioral model's piecewise function 𝑓𝑖 < 𝐶1or 
𝑓𝑖 ≥ 𝐶1. �e shared input signal would trigger repeated 
generation through the feedback circuit. In the �rst case, this 
circuit takes priority, and subsequent shared input signals 
would not a�ect the frequency of the output signal, which is 
the multiplication of all circuit frequencies. In the other case, 
the shared input signal is prioritized, and every signal would 
start the generation process anew, resulting in an inde�nite 
delay in the output for a certain period;

Figure 6. Proposed behavioral model translation into a neural 
network model.

�us, this network fragment can ful�ll the requirements of both 
the 1x2 and composite 3x2x1 models serving as a basis for 
constructing a topologically uniform spiking neural network 
that describes the behavior of organisms trained by evolution to 
possess natural computational capabilities. 

 We hypothesize that these simple functional principles could 
also be applicable to more advanced species, such as ants, 
worms, ichnospecies, honeybees, and others, and we encourage 
further research into this type of natural neural network 
[19,20,21]. 

Conclusions
In conclusion, integrating simple spiking networks, each tuned 
to di�erent frequencies, into a composite model capable of 
replicating the complex track-and-search behavior observed in 
nature could o�er valuable insights into the foundational 
principles of intelligence. We hypothesize that the performance 
of these small-scale networks (We refer to them as “tuning 
forks” or camertones), when they all “play in tune and in 
harmony”, may surpass that of traditional arti�cial neural 
networks (ANNs) due to their evolutionary re�nement and 
minimal training requirements. �e learning mechanisms of 
such networks are likely to di�er signi�cantly from those of 
traditional ANNs, warranting further investigation to fully 
understand their unique learning processes.
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All code and data are publicly accessible at: 
https://github.com/FoundAItion-ai/Its
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